Energy Storage (Distributed)
Electricity Generation
Standalone batteries and electric vehicles make it possible to store energy at home or work. They ensure supply even when variable renewables are not producing.
Rank and results by 2050 #77
Energy Storage (Distributed)
TOTAL CO2-EQ REDUCTION (GT)
Total CO2-equivalent reduction in atmospheric greenhouse gases by 2050 (gigatons)
NET COST (billions US $)
Net cost to implement
SAVINGS (billions US $)
Net savings by 2050
Impact:
Distributed energy storage is an essential supporting technology for many solutions. Microgrids, net zero buildings, grid flexibility, and rooftop solar all depend on or are amplified by the use of dispersed storage systems, which facilitate uptake of renewable energy and avert the expansion of coal, oil, and gas electricity generation. Adoption of distributed storage varies depending on whether it is used in an urban or rural setting; those dynamics are not explicitly modeled.
Energy Storage (Distributed)
Electricity Generation
Standalone batteries and electric vehicles make it possible to store energy at home or work. They ensure supply even when variable renewables are not producing.
There is an energy transition under way. The world is shifting away from carbon-based fuels to renewable energy. With distributed renewables, such as rooftop solar, a utility’s customers become producers and can sell power to the grid. Another part of the transition is distributed energy storage—the ability to retain small or large amounts of energy produced where you live or work and use it to meet your own needs.
The wind and sun have their own timetables, making generation variable. Storage can ensure electricity is available, even when sunshine or breezes are not. There are two basic sources of small-scale storage: stand-alone batteries and electric vehicles. If they are used to enable more reliance on renewables, there will be substantial climate benefits.
Creating a distributed energy storage system, or grid independence, requires affordable storage, and until now, prices for batteries have been prohibitively expensive. That is changing. From $1,200 per kilowatt-hour in 2009, the cost dropped to roughly $200 in 2016. Companies are predicting $50 per kilowatt-hour in a few years. For $1,200 per kilowatt-hour, you can purchase a 24-kilowatt-hour energy storage system and get a car thrown in for free—the all-electric Nissan LEAF.